Optimization of supervised self-organizing maps with genetic algorithms for classification of urinary calculi
نویسندگان
چکیده
Supervised self-organizing maps were used for classification of 160 infrared spectra of urinary calculi composed of calcium oxalates (whewellite and weddellite), pure or in binary or ternary mixtures with carbonate apatite, struvite or uric acid. The study was focused to such calculi since more than 80% of the samples analyzed contained some or all of the above-mentioned constituents. The classification was done on the basis of the infrared spectra in the 1450–450 cm region. Two procedures were used in order to find the most suitable size and for optimizing the self-organizing map of which that using the genetic algorithms gave better results. Using this procedure several sets of solutions with zero misclassifications were obtained. Thus, the self-organizing maps may be considered as a promising tool for qualitative analysis of urinary calculi. q 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Determination of Best Supervised Classification Algorithm for Land Use Maps using Satellite Images (Case Study: Baft, Kerman Province, Iran)
According to the fundamental goal of remote sensing technology, the image classification of desired sensors can be introduced as the most important part of satellite image interpretation. There exist various algorithms in relation to the supervised land use classification that the most pertinent one should be determined. Therefore, this study has been conducted to determine the best and most su...
متن کاملClassification of perovskites with supervised self-organizing maps.
In this work supervised self-organizing maps were used for structural classification of perovskites. For this purpose, structural data for total number of 286 perovskites, belonging to ABO3 and/or A2BB'O6 types, were collected from literature: 130 of these are cubic, 85 orthorhombic and 71 monoclinic. For classification purposes, the effective ionic radii of the cations, electronegativities of ...
متن کاملOptimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کامل